

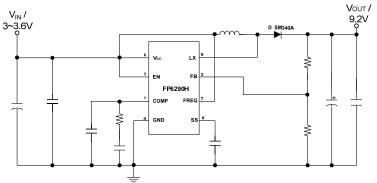
FP6290H

Low-Noise Step-Up Current Mode PWM Converter

General Description

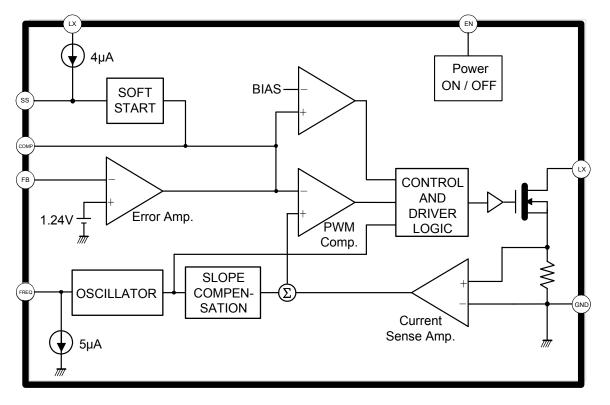
The FP6290H is a current mode boost DC-DC converter. Its PWM circuitry with built-in 0.15Ω power MOSFET makes this converter highly power efficiently. Selectable high switching frequency allows faster loop response and easy filtering with a low noise output. The non-inverting input its error amplifier is connected to an internal 1.24V precision reference voltage. Soft-Start time can be programmed with an external capacitor, which sets the input current ramp rate. Current mode control and external compensation network make it easy and flexible to stabilize the system.

The FP6290H is available in the SOP-8L (EP) and DFN-8L (EP) package. Combined with low ESR capacitors, it reduced PCB space for step-up applications.


Features

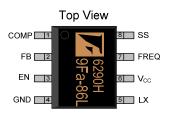
- Adjustable Output from V_{CC} to 12V
- > Internal Fixed PWM Frequency: 640KHz / 1.2MHz
- Frequency Selection Pin
- Precision Feedback Reference Voltage: 1.24V
- > Internal 0.15Ω, 3A, 14V Power MOSFET
- External Programmable Soft-Start Function (SS)
- ➢ Shutdown Current : 0.1µA
- > Over Current Protection
- Package: SOP-8L (EP), DFN-8L(EP)

Applications

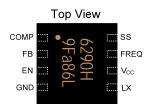

- LCD Displays
- Digital Cameras
- > Handheld Devices
- Portable Products

Typical Application Circuit

Function Block Diagram



This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

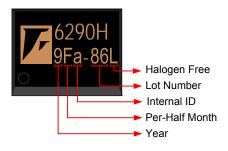

Pin Descriptions

SOP-8L (EP)

Bottom View

DFN-8L (EP)

Bottom View


Name	No.	1/0	Description
COMP	1	0	Error Amplifier Compensation Output
FB	2	I	Error Amplifier Inverting Input
EN	3	Ι	Enable Control
GND	4	Р	IC Ground
LX	5	0	Switch Output
V _{CC}	6	Р	IC Power Supply
FREQ	7	0	Frequency Selection
SS	8	Ι	Soft-Start Control
EP	9	Р	Exposed PAD. Must connect to GND

Name	No.	1/0	Description
COMP	1	0	Error Amplifier Compensation Output
FB	2	Ι	Error Amplifier Inverting Input
EN	3	I	Enable Control
GND	4	Р	IC Ground
LX	5	0	Switch Output
V _{CC}	6	Р	IC Power Supply
FREQ	7	0	Frequency Selection
SS	8	I	Soft-Start Control
EP	9	Р	Exposed PAD. Must connect to GND



Marking Information

SOP-8L (EP)

DFN-8L (EP)

Halogen Free: Halogen free product indicator Lot Number: Wafer lot number's last two digits For Example: $132386TB \rightarrow 86$ Internal ID: Internal Identification Code

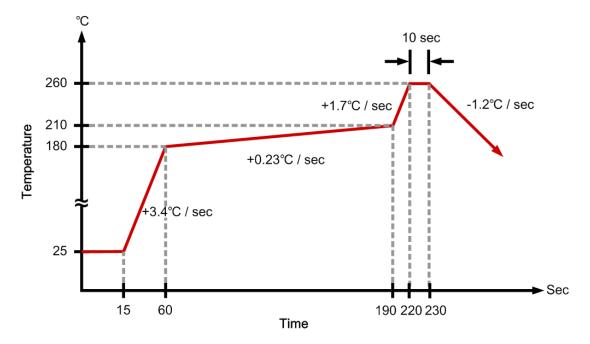
Per-Half Month: Production period indicated in half month time unit

For Example: January \rightarrow A (Front Half Month), B (Last Half Month)

February → C (Front Half Month), D (Last Half Month)

Year: Production year's last digit

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.


Ordering Information

Part Number	Operating Temperature	Package	MOQ	Description
FP6290HXR-G1	-40°C ~ +85°C	SOP-8L (EP)	2500EA	Tape & Reel
FP6290HdR-G1	-40°C ~ +85°C	DFN-8L (EP)	2500EA	Tape & Reel

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	V _{cc}				6	V
LX to GND			-0.3		14	V
SS,COMP to GND			-0.3		V _{CC} +0.3	V
EN,FREQ,FB to GND			-0.3		V _{CC}	V
Junction Temperature	TJ				+150	°C
Storage Temperature	Ts		-65		+150	°C
	θја	SOP-8L (EP)			+60	°C / W
Thermal Resistance	θις				+4	°C / W
Thermal Resistance	θја				+68	°C / W
	θις	DFN-8L (EP)			+4.2	°C / W
Lead Temperature		(soldering, 10 sec)			+260	°C

Suggested IR Re-flow Soldering Curve

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Recommended Operating Conditions

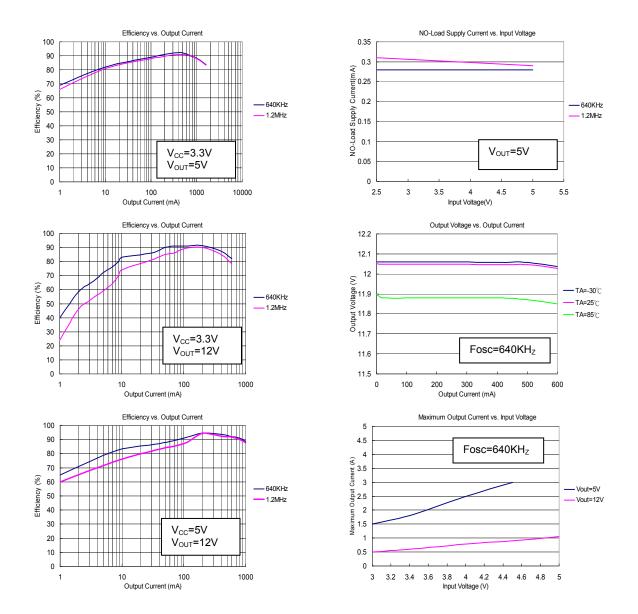
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	V _{IN}		2.6		5.5	V
Operating Temperature			-40		+85	°C

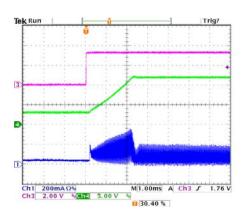
DC Electrical Characteristics (V_{IN}=3V, T_A= 25°C, V_{FREQ}=0V, unless otherwise noted)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Reference Section						
Output Voltage	V _{REF}	COMP connected to FB	1.222	1.240	1.258	V
Line Regulation	$\triangle V_{REF} / V_{REF}$	V _{CC} =2.6V~5.5V		0.05		% / V
Output Voltage Change with		T _A =-40°C to 25°C		1		%
Temperature		T _A = 25°C to 85°C		1		%
Under Voltage Lockout Section	n					
Upper Threshold Voltage (V _{CC})	VUPPER			2.38	2.53	V
Lower Threshold Voltage (V_{CC})	V _{LOW}	T _A =25°C		2.33	2.48	V
Hysteresis (V _{CC})	V _{HYS}			50		mV
Soft-Start Section						
Reset Switch Resistance	R _{SS}				100	Ω
Input Source Current	I _{SS}	V _{SS} =1.2V	1.5	4.0	7.0	μA
Oscillator Section		1				
Frequency	£	FREQ=GND	540	640	740	KHz
Frequency	f _{osc}	FREQ=V _{CC}	1.00	1.22	1.50	MHz
Frequency Change with Voltage	$\triangle f / \triangle V$	V _{CC} =2.6V to 5.5V		2		% / V
Frequency Change with Temperature	$\triangle f / \triangle V$	T _A =-40°C to 85°C		10		%
Maximum Duty Cycle	T _{DUTY}	FREQ=GND	79	88		%
	UDUTY	FREQ=V _{CC}		88		%
Error–Amplifier Section						
FB Input Bias Current	I _{BIAS}	V _{FB} =1.24V			40	nA
Trans-conductance	gm	∆I=5μA	70	140	240	μΑ / V
Voltage Gain	Av			700		V/V
Output Section		·				
NMOS Current Limit	I _{LIM}	V _{FB} =1V,Duty Cycle=65%		3		А
NMOS On Resistance	R _{DS (ON)}	I _{LX} =1.2A		0.15	0.5	Ω
Output Leakage Current	I _{LXOFF}	V _{LX} =12V		0.01	20	μA
Current-Sense Trans-Resistance	Rcs			0.35		V/A

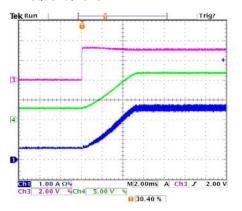
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Control Input Section							
Input High Voltage	VIH	EN, FREQ pin V _{CC} =2.6V~5.5V	0.7×V _{CC}			V	
Input Low Voltage	V _{IL}	EN, FREQ pin V _{CC} =2.6V~5.5V			0.3× V _{CC}	V	
Hysteresis		EN,FREQ		0.1×V _{CC}		V	
FREQ Pull-Down Current	I _{FREQ}		1.8	5	9	μA	
EN Input Current	I _{EN}			1		nA	
Total Device							
Disable Supply Current	IDISABLE	EN=GND		0.1	10	μA	
Standby Supply Current	I _{SBY}	V _{FB} =1.3V		0.20	0.35	mA	
Average Supply Current	I _{AVG}	V _{FB} =1.0V		2.0	5.0	mA	

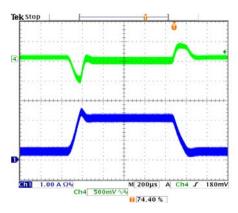

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

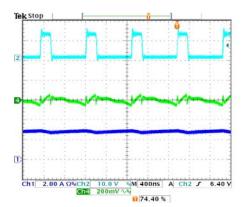

Typical Operating Characteristics

(V_{CC}=3.3V, V_{OUT}=5V, T_A= 25°C, unless otherwise noted)



This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

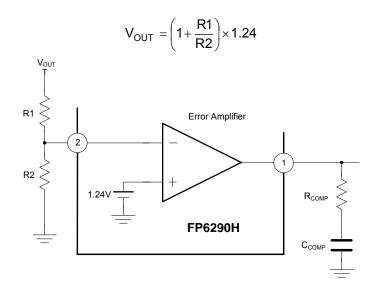



 $\label{eq:CH1=Inductor Current,CH4=V_{OUT}} \begin{array}{l} V_{CC} = 3.3V, \ V_{OUT} = 12V \\ I_{LOAD} = 10mA \\ Frequency = 640KHz \end{array}$

CH1=Inductor Current,CH3=EN,CH4= V_{OUT} V_{CC}=3.3V, V_{OUT}=12V I_{LOAD}=600mA Freq=640KHz

CH1=Inductor Current,CH3=EN,CH4= V_{OUT} V_{CC}=3.3V, V_{OUT}=12V I_{LOAD}=100mA~500mA Frequencv=640KHz

 $\label{eq:CH1=Inductor Current,CH3=LX,CH4=V_{OUT}} \begin{array}{l} AC\text{-}Coupled \\ V_{CC}\text{=}3.3V, V_{OUT}\text{=}12V \\ I_{LOAD}\text{=}600mA \\ Freq\text{=}1.2MHz \end{array}$



Voltage Reference

A 1.24V reference regulator supplies to the FP6290H error amplifier's non-inverting terminal.

Error Amplifier

The error amplifier compares a sample of the dc-dc converter output voltage with the 1.24V (V_{REF}) reference and generates an error signal for the PWM comparator. Output voltage of dc-dc converter is setting with the resistor divider by the following equation:

Oscillator

The switching frequency of FP6290H can be selected to operate at either 640KHz or 1.2MHz. Connect the FREQ pin to GND for 640KHz operation, or V_{CC} for 1.2MHz operation. FREQ pin has an internal pull-down current around 5μ A. It gives user the option of selecting 640KHz operation by leaving FREQ unconnected.

Soft Start

The soft start is functional after power on. The interval of soft start time is determined by a capacitor connected to SS pin. When EN pin is taken high, the soft start capacitor (C_{SS}) is charged by a constant current of 4 μ A (typ). During this interval, the SS voltage directly controls the peak inductor current. The maximum load current is available after the soft-start interval is completed. Once the EN pin is taken low, the soft-start capacitor is discharged to ground to prepare for next start-up.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

The load must wait for the soft-start interval to finish before drawing a significant amount of load current. The duration after which the load can begin to draw maximum load current is:

 $T_{MAX} = 6.77 \times 10^5 Css$

ΕN

The FP6290H can be turn off to reduce the supply current to 0.1 μ A when EN is low. In this mode, the internal reference, error amplifier, comparators, and biasing circuitry turn off while the N-channel MOSFET is turned off. The boost converter's output is connected to V_{CC} by the external inductor and catch diode.

Output Current Capability

The output current capability of the FP6290H is a function of current limit, input voltage, operation frequency, and inductor value. Because of the slope compensation used to stabilize the feedback loop, the duty cycle affects the current limit. The output current capability is governed by the following equation:

$$\mathsf{Iout}_{(\mathsf{MAX})} = \big[\mathsf{ILIM} \times (1.26 - 0.4 \times \mathsf{Duty}) - 0.5 \times \mathsf{Duty} \times \mathsf{Vin}/(\mathsf{fosc} \times \mathsf{L})\big] \times \eta \times \mathsf{Vin}/\mathsf{Vout}$$

Where:

I_{LIM}=current limit specified at 65%

 $\mathsf{Duty=duty\ cycle=}\frac{(\mathsf{VOUT}-\mathsf{VIN}+\mathsf{VDIODE})}{\mathsf{VOUT}-\mathsf{ILIM}\times\mathsf{RON}+\mathsf{VDIODE}}$

V_{DIODE}=catch diode forward voltage at ILIM

η=conversion efficiency,85%nominal

Current Limitation

The internal power-MOS switch current is monitored cycle-by-cycle and is limited to the value not exceed 3A (Typ.). When the switch current reaches the limited value, the internal power-MOS is turned off immediately until the next cycle.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Typical Application

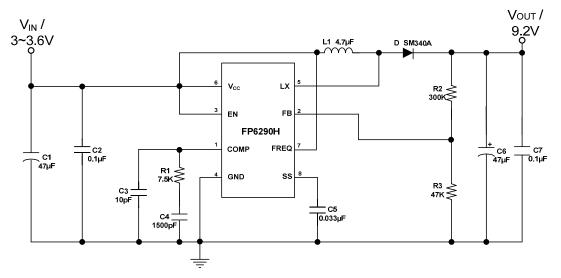
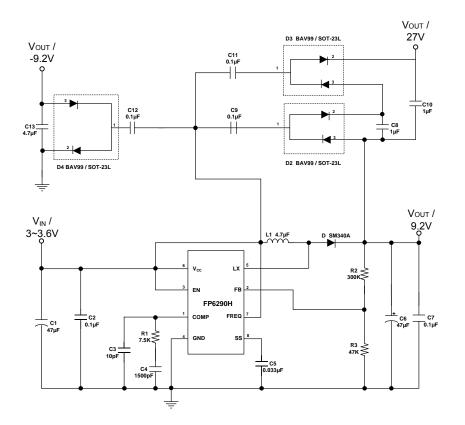
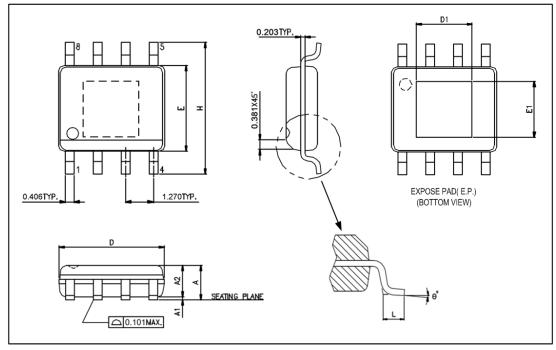


Figure 1 Typical Application Circuits




Figure 2 TFT Panel Power Supply Application Circuits

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

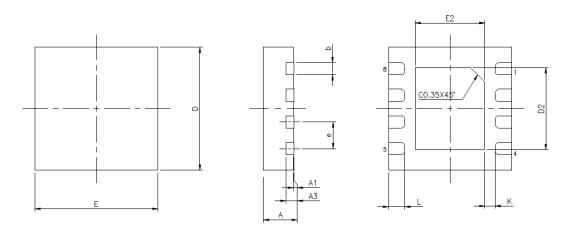
Package Outline

SOP-8L (EP)

Symbols	Min. (mm)	Max. (mm)
А	1.346	1.752
A1	0.050	0.152
A2		1.498
D	4.800	4.978
E	3.810	3.987
Н	5.791	6.197
L	0.406	1.270
θ°	0°	8°

Exposed PAD Dimensions:

Symbols	Min. (mm)	Max. (mm)		
E1	2.184 REF			
D1	2.971 REF			


Note:

- 1. Package dimensions are in compliance with JEDEC outline: MS-012 AA.
- 2. Dimension "D" does not include molding flash, protrusions or gate burrs.
- 3. Dimension "E" does not include inter-lead flash or protrusions

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

DFN-8L (EP)

Symbols	Min. (mm)	Max. (mm)	
A	0.700	0.800	
A1	0.000	0.050	
A3	0.20	REF	
b	0.25	0.35	
D	3.00		
E	3.00		
D2	1.600	2.500	
E2	1.350	1.750	
e	0.650		
L	0.300	0.500	
К	0.200	-	

UNIT: mm