28V, 2A Buck Constant Current Switching Regulator for White LED

General Description

The FP7102 is a PWM control buck converter designed to provide a simple, high efficiency solution for driving high power LEDs. With a 0.25 V reference voltage feedback control to minimize power dissipation, an external resistor sets the current as needed for driving various types of LEDs. The FP7102 includes a high current P-MOSFET to realize high efficiency and excellent transient characteristics. The PWM control circuit is able to change the duty ratio linearly from 0 up to 100%. Other features include user accessible EN/DIM pin for enabling and PWM dimming of LEDs, thermal shutdown, cycle-by cycle current limit and over current protection.

Features

> Wide Supply Voltage Operating Range: 3.6 to 28 V
> Built-in P-MOSFET for 2A Loading Capability
$>$ Precision Feedback Reference Voltage: 0.25V (2\%)
> Low Current Consumption: 4mA
> Internal Fixed Oscillator Frequency: 320KHz (Typ.)
$>$ Internal Soft-Start Function (SS)
> Over Current Protection
> Package: SOP-8L

Typical Application Circuit

[^0]
Function Block Diagram

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Pin Descriptions

SOP- 8L

Name	No.	I/ O	Description
FB	1	I	Error Amplifier Inverting Input
EN / DIM	2	I	Enable Control
COMP	3	O	Error Amplifier Compensation Output
VCC	4	P	IC Power Supply (PMOS Source)
LX	5	P	PMOS High Current Output
LX	6	P	PMOS High Current Output
GND	7	O	IC Ground
GND	8	O	IC Ground

SOP- 8L (EP)

[^1] No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Marking Information

Halogen Free: Halogen free product indicator
Lot Number: Wafer lot number's last two digits

Internal ID: Internal Identification Code
Per-Half Month: Production period indicated in half month time unit
For Example: January $\rightarrow \mathrm{A}$ (Front Half Month), B (Last Half Month)
February \rightarrow C(Front Half Month), D (Last Half Month)
Year: Production year's last digit

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Ordering Information

Part Number	Operating Temperature	Package	MOQ	Description
FP7102DR-LF	$-25^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$	SOP-8L	2500 EA	Tape \& Reel
FP7102XR-LF	$-25^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$	SOP-8L (EP)	2500 EA	Tape \& Reel

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Power Supply Voltage	V_{IN}				28	V
Output Source Current					2	A
Error Amplifier Inverting Input			-0.3		+1.2	V
Allowable Dissipation		$\mathrm{T}_{\mathrm{A}} \leqq+25^{\circ} \mathrm{C}$			650	mW
Thermal Resistance Junction to Ambient	θ_{JA}				+175	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case	θ_{JC}				+45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD Susceptibility		HBM (Human Body Mode)		2		KV
		MM (Machine Mode)		200		V
Storage Temperature			-55		+125	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)					+260	${ }^{\circ} \mathrm{C}$

IR Re-flow Soldering Curve

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

FP7102
Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply Voltage	$\mathrm{V}_{\mathbb{N}}$		3.6		28	V
Operating Temperature			-25		105	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Reference						
Output Voltage	$V_{\text {REF }}$	FB connected to COMP	0.245	0.25	0.255	V
Input Regulation	$\triangle \mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 25 V		2	12.5	mV
Output Voltage Change with Temperature	$\begin{gathered} \triangle V_{\text {REF }} / \\ V_{\text {REF }} \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$		1	2	\%
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		1	2	
Oscillator Section						
Oscillation Frequency	f			320		KHz
Frequency Change with Voltage	$\Delta \mathrm{f} / \Delta \mathrm{V}$	$\mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V}$ to 25 V		5		\%
Frequency Change with Temperature	$\Delta \mathrm{f} / \Delta \mathrm{T}$	$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		5		\%

Error Amplifier Section

Input Bias Current	I_{B}		-1.0	-0.2	1.0	$\mu \mathrm{A}$
Voltage Gain	Av			100		V/V
Frequency Bandwidth	BW	$\mathrm{Av}=0 \mathrm{~dB}$		6		MHz
Output Voltage Swing Positive	$V_{\text {POS }}$		1.7	2		V
Output Voltage Swing Negative	$\mathrm{V}_{\text {NEG }}$			0.1	0.2	V
Output Source Current	Isource	$\mathrm{V}_{\text {comp }}=200 \mathrm{mV}$	-15	-30		$\mu \mathrm{A}$
Output Sink Current	$\mathrm{I}_{\text {SINK }}$	$\mathrm{V}_{\text {comp }}=200 \mathrm{mV}$	15	30		$\mu \mathrm{A}$
Idle Period Adjustment Section						
Maximum Duty Cycle	$\mathrm{T}_{\text {DUTY }}$	$\mathrm{V}_{\mathrm{FB}}=0.2 \mathrm{~V}$		100		\%
Output Section						
PMOS D-S Voltage	$V_{\text {DSS }}$	$\mathrm{V}_{\text {comp }}=0.1 \mathrm{~V}$		-20		V
PMOS Source Current	I_{D}			-2		A
PMOS On Resistance	R ${ }_{\text {ds (}}^{\text {(}}$)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$		70	150	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$		42	90	
Output Leakage Current	IL			5		$\mu \mathrm{A}$
Thermal Shutdown Section						
Thermal shutdown Temperature				150		${ }^{\circ} \mathrm{C}$
Over Current Protection Section						
PMOS OCP Current	locp			3		A

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Total Device Section	$\mathrm{I}_{\text {EN }}$	EN pin Open			20	$\mu \mathrm{~A}$
EN Input Current			1.12		V	
Upper Threshold Voltage (EN)	V $_{\text {UPPER }}$			0.87		V
Lower Threshold Voltage (EN)	$\mathrm{V}_{\text {LOW }}$		210	250		mV
Hysteresis	$\mathrm{V}_{\text {HYS }}$			4	6	mA
Average Supply Current	$\mathrm{I}_{\text {AVE }}$			15		$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {CC }}$ Shutdown	$\mathrm{I}_{\text {SHUTDOwN }}$					

[^2] No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Detailed Description

Voltage Reference

A built-in 2.5 V reference regulator supplies FP7102 internal circuits. Also, this 2.5 V reference voltage is divided down by an internal resistive divider to provide a 0.25 V precision reference voltage to the error amplifier non-inverting terminal.

Setting the LED Current

FP7102 is a constant current buck regulator. The LEDs are connected between $\mathrm{V}_{\text {out }}$ and FB pin as shown in the Typical Application Circuit section. The FB pin is 0.25 V in regulation. Therefore, the LEDs current I_{F} is set by $V_{F B}$ and the resistor R_{2} connected between $F B$ and ground by the following equation:

$$
\mathrm{I}_{\mathrm{F}}=\frac{\mathrm{V}_{\mathrm{FB}}}{\mathrm{R}_{2}}
$$

I_{F} should not exceed the 2A current capability of FP7102 and therefore R_{2} minimum value must be approximately 0.13Ω.

Output Voltage

The output voltage is primarily determined by the number of LEDs(n) connected between $\mathrm{V}_{\text {OUT }}$ and FB pin. Therefore, $\mathrm{V}_{\text {out }}$ can be written as:

$$
V_{O U T}=\left(\left(n \times V_{F}\right)+V_{F B}\right)
$$

Where V_{F} is the forward voltage of one LED at the set LED current level (see LED manufacturer datasheet for forward characteristics curve)

Oscillator

The fixed PWM frequency is generated by an internal oscillator. Its typical values are 320 KHz .

Thermal Protection

The thermal protection is triggered when junction temperature is higher than $150^{\circ} \mathrm{C}$ that may occurs by an abnormal heavy current loading. When this happens, the FP7102 turns output off. Once the junction temperature is cooled down to lower than $150^{\circ} \mathrm{C}, \mathrm{FP} 7102$ starts again and turns the power switch on.

Over Current Protection

The FP7102 uses cycle-by-cycle current limit to protect the internal power switch. During each switching cycle, a current limit comparator detects if the power switch current exceeds the internal setting current. If it does, over current protection function decrease the oscillator frequency to prevent thermal issue.

Typical Application

Package Outline

SOP-8L

UNIT: mm

Symbols	Min. (mm)	Max. (mm)
A	1.346	1.752
A1	0.101	0.254
A2		1.498
D	4.800	4.978
E	3.810	3.987
H	5.791	6.197
L	0.406	1.270
θ°	0°	8°

Note:

1. Package dimensions are in compliance with JEDEC outline: MS-012 AC.
2. Dimension " D " does not include molding flash, protrusions or gate burrs.
3. Dimension " E " does not include inter-lead flash or protrusions.

SOP-8L (EP)

UNIT: mm

Symbols	Min. (mm)	Max. (mm)
A	1.346	1.752
A1	0.050	0.152
A2		1.498
D	4.800	4.978
E	3.810	3.987
H	5.791	6.197
L	0.406	1.270
θ°	0°	8°

Exposed PAD Dimensions:

Symbols	Min. (mm)	Max. (mm)
E1	2.184 REF	
D1	2.971 REF	

Note:

1. Package dimensions are in compliance with JEDEC outline: MO-178 AA.
2. Dimension "D" does not include molding flash, protrusions or gate burrs.
3. Dimension "E" does not include inter-lead flash or protrusions

[^0]: This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

[^1]: This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.

[^2]: This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.

